Saturday, April 5, 2014

A Mission to Mars

The topic of exploring other planets has been of great interest both to myself and to astronomers and scholars since the ability to observe them was achieved. When John F. Kennedy made a statement to students at Rice and the American populace on September 12, 1962 that “We choose to go to the moon,” Kennedy effectively promised to the American people that while the space-race was indeed in full effect, that human achievement would not cease until we put a man on the moon. 7 years later in 1969, with the moon landing brought on by Apollo 11, that promise was fulfilled. Now, humans have a new goal – to reach and put a man on the more “habitable” entity in our system – the planet Mars.

However, the question remains: how would humans survive on Mars? What systems would be put in place to ensure some sort of longevity both of the mission and the crew involved? What can we gain from this mission? This article will seek to answer some of these questions.

In order to survive on Mars, the crew would need to integrate several safety systems to the mission. On a log scale, exposure to interplanetary space would give 13-25 rems (unit of radiation) per year. As one article stated, “interplanetary astronauts would absorb more radiation in a single year than radiation workers are supposed to receive in a lifetime, and a large number would develop cancer and other illnesses.” Not to mention, “solar flares and Earth’s Van Allen radiation belts can kill outright but are easier to avoid.” Thus, the mission to Mars already poses many risks for the spacefaring astronauts. Whether or not we are willing to take that risk would, it would seem, depend on those willing to take the trip. The atmosphere on Mars is a “scrawny […] 10 grams per square centimeter”; thus, in order to shield the astronauts from the dangers of radiation, the base on Mars would likely need to be shielded by several meters of rock and soil, making the entire expedition all the more difficult, which may hinder the implementation of the Mars mission but may also provide for higher longevity of the mission since the base would become permanent and be shielded from the environment.

While the aforementioned drawback is obviously an important concern, the benefits of the mission should also be established. More research can be executed in Mars’ environment. In addition, digging into Mars’ surface may prove fruitful—there may be more under the Martian regolith than we think we know. However, should we find certain microbiology native to Mars, we might forward contaminate the area since the mission would be bringing microbes from Earth to Mars which is against COSPAR and NASA policies which is another drawback to consider.

Scholars have argued both the merits and drawbacks of a Mars mission. Yes, it is expensive; yes, it may not prove to be fruitful. But for the sake of human achievement, a Mars mission—such as Mars One—that would put a man on Mars may prove to be one of humanity’s greatest achievements of the decade. However, as was discussed, such a mission poses a great risk to human life.
Nathaniel Benzaquen-Ouakrat